Mathematics. Articles in English (et en français dans le futur).

The Banach Algebra of Borel Measures on Euclidean Space

This blog post is intended to deliver a quick explanation of the algebra of Borel measures on $\mathbb{R}^n$. It will be broken into pieces. All complex-valued complex Borel measures $M(\mathbb{R}^n)$ clearly form a vector space over $\mathbb{C}$. The main goal of this post is to show that this is a Banach space and also a Banach algebra.

In fact, the $\mathbb{R}^n$ case can be generalised into any locally compact abelian group (see any abstract harmonic analysis books), this is because what really matters here is being locally compact and abelian. But at this moment we stick to Euclidean spaces. Note since $\mathbb{R}^n$ is $\sigma$-compact, all Borel measures are regular.

To read this post you need to be familiar with some basic properties of Banach algebra, complex Borel measures, and the most important, Fubini’s theorem.

The Banach Algebra of Borel Measures on Euclidean Space

Elementary Properties of Cesàro Operator in L^2

We study the average of sum, in the sense of integral.
Elementary Properties of Cesàro Operator in L^2

Left Shift Semigroup and Its Infinitesimal Generator

Left shift operator

Throughout we consider the Hilbert space $L^2=L^2(\mathbb{R})$, the space of all complex-valued functions with real variable such that $f \in L^2$ if and only if

where $m$ denotes the ordinary Lebesgue measure (in fact it’s legitimate to consider Riemann integral in this context).

For each $t \geq 0$, we assign an bounded linear operator $Q(t)$ such that

This is indeed bounded since we have $\lVert Q(t)f \rVert_2 = \lVert f \rVert_2$ as the Lebesgue measure is translate-invariant. This is a left translation operator with a single step $t$.

Left Shift Semigroup and Its Infinitesimal Generator

A proof of the ordinary Gleason-Kahane-Żelazko theorem for complex functionals

A proof of the ordinary Gleason-Kahane-Żelazko theorem for complex functionals

The completeness of the quotient space (topological vector space)

The completeness of the quotient space (topological vector space)

An Introduction to Quotient Space

An Introduction to Quotient Space