Elementary Properties of Cesàro Operator in L^2
We study the average of sum, in the sense of integral.
Read moreElementary Properties of Cesàro Operator in L^2
Left Shift Semigroup and Its Infinitesimal Generator
Throughout we consider the Hilbert space $L^2=L^2(\mathbb{R})$, the space of all complex-valued functions with real variable such that $f \in L^2$ if and only if
where $m$ denotes the ordinary Lebesgue measure (in fact it’s legitimate to consider Riemann integral in this context).
For each $t \geq 0$, we assign an bounded linear operator $Q(t)$ such that
This is indeed bounded since we have $\lVert Q(t)f \rVert_2 = \lVert f \rVert_2$ as the Lebesgue measure is translate-invariant. This is a left translation operator with a single step $t$.