# Irreducible Representations of GL_2(F_q)

In this post we follow the step of Fulton-Harris to classify all irreducible representations of $GL_2(\mathbb{F}_q)$. A character table is added at the end.

Read moreIn this post we follow the step of Fulton-Harris to classify all irreducible representations of $GL_2(\mathbb{F}_q)$. A character table is added at the end.

Read moreWe give a quick look at the Segre embedding and try to use that in a fundamental tool of Diophantine Geometry - heights.

Read moreIn this post, we develop a fundamental device: absolute value on an arbitrary field with various points of view.

Read moreIn this post, irreducible representations of $SO(3)$ are studied, with much more extensive applications of linear algebra.

Read more$SU(2)$ has a lot of interesting mathematical and physical properties. In this post we study its irreducible representations in a mathematician's way.

Read moreWe develop two almost straightforward way to compute the Fourier transform of $\exp(-cx^2)$, in the sense that any contour integration and the calculus of residues are not required at all. The first cool approach enables us to think about these elementary concepts much deeper, so I highly recommend to study this approach as long as you are familiar with ODE of first order.

Read moreWe offer a detailed proof of the Riemann mapping theorem, which states that every proper simply connected region is conformally equivalent to the open unit disc.

Read moreIn this episode we focus on the rational field. What can we know about the Galois group of an irreducible polynomial with prime degree? There is a method by counting the number of nonreal roots. From this, we obtain an algorithm to compute the Galois group.

Read moreWe study the Galois group of a cubic polynomial over a field with characteristic not equal to 2 and 3.

Read moreWe try to prove the fundamental theorem of algebra, that the complex field is algebraically closed, using as little analysis as possible. In other words, the following proof will be *almost* algebraic.

Read more