Several ways to prove Hardy's inequality
Suppose $1 < p < \infty$ and $f \in L^p((0,\infty))$ (with respect to Lebesgue measure of course) is a nonnegative function, take
we have Hardy’s inequality $\def\lrVert[#1]{\lVert #1 \rVert}$
where $\frac{1}{p}+\frac{1}{q}=1$ of course.
There are several ways to prove it. I think there are several good reasons to write them down thoroughly since that may be why you find this page. Maybe you are burnt out since it’s left as exercise. You are assumed to have enough knowledge of Lebesgue measure and integration.
Minkowski’s integral inequality
Let $S_1,S_2 \subset \mathbb{R}$ be two measurable set, suppose $F:S_1 \times S_2 \to \mathbb{R}$ is measurable, then
A proof can be found at here by turning to Example A9. You may need to replace all measures with Lebesgue measure $m$.
Now let’s get into it. For a measurable function in this place we should have $G(x,t)=\frac{f(t)}{x}$. If we put this function inside this inequality, we see
Note we have used change-of-variable twice and the inequality once.
A constructive approach
I have no idea how people came up with this solution. Take $xF(x)=\int_0^x f(t)t^{u}t^{-u}dt$ where $0<u<1-\frac{1}{p}$. Hölder’s inequality gives us
Hence
Note we have used the fact that $\frac{1}{p}+\frac{1}{q}=1 \implies p+q=pq$ and $\frac{p}{q}=p-1$. Fubini’s theorem gives us the final answer:
It remains to find the minimum of $\varphi(u) = \left(\frac{1}{1-uq}\right)^{p-1}\frac{1}{up}$. This is an elementary calculus problem. By taking its derivative, we see when $u=\frac{1}{pq}<1-\frac{1}{p}$ it attains its minimum $\left(\frac{p}{p-1}\right)^p=q^p$. Hence we get
which is exactly what we want. Note the constant $q$ cannot be replaced with a smaller one. We simply proved the case when $f \geq 0$. For the general case, one simply needs to take absolute value.
Integration by parts
This approach makes use of properties of $L^p$ space. Still we assume that $f \geq 0$ but we also assume $f \in C_c((0,\infty))$, that is, $f$ is continuous and has compact support. Hence $F$ is differentiable in this situation. Integration by parts gives
Note since $f$ has compact support, there are some $[a,b]$ such that $f >0$ only if $0 < a \leq x \leq b < \infty$ and hence $xF(x)^p\vert_0^\infty=0$. Next it is natural to take a look at $F’(x)$. Note we have
hence $xF’(x)=f(x)-F(x)$. A substitution gives us
which is equivalent to say
Hölder’s inequality gives us
Together with the identity above we get
which is exactly what we want since $1-\frac{1}{q}=\frac{1}{p}$ and all we need to do is divide $\left[\int_0^\infty F^pdx\right]^{1/q}$ on both sides. So what’s next? Note $C_c((0,\infty))$ is dense in $L^p((0,\infty))$. For any $f \in L^p((0,\infty))$, we can take a sequence of functions $f_n \in C_c((0,\infty))$ such that $f_n \to f$ with respect to $L^p$-norm. Taking $F=\frac{1}{x}\int_0^x f(t)dt$ and $F_n = \frac{1}{x}\int_0^x f_n(t)dt$, we need to show that $F_n \to F$ pointwise, so that we can use Fatou’s lemma. For $\varepsilon>0$, there exists some $m$ such that $\lrVert[f_n-f]_p < \frac{1}{n}$. Thus
Hence $F_n \to F$ pointwise, which also implies that $|F_n|^p \to |F|^p$ pointwise. For $|F_n|$ we have
note the third inequality follows since we have already proved it for $f \geq 0$. By Fatou’s lemma, we have