Suppose $1 < p < \infty$ and $f \in L^p((0,\infty))$ (with respect to Lebesgue measure of course) is a nonnegative function, take

we have Hardy’s inequality $\def\lrVert[#1]{\lVert #1 \rVert}$

where $\frac{1}{p}+\frac{1}{q}=1$ of course.

There are several ways to prove it. I think there are several good reasons to write them down thoroughly since that may be why you find this page. Maybe you are burnt out since it’s *left as exercise*. You are assumed to have enough knowledge of Lebesgue measure and integration.

## Minkowski’s integral inequality

Let $S_1,S_2 \subset \mathbb{R}$ be two measurable set, suppose $F:S_1 \times S_2 \to \mathbb{R}$ is measurable, then

A proof can be found at here and you need to turn to Example A9. You may need to replace all measures with Lebesgue measure $m$.

Now let’s get into it. For a measurable function in this place we should have $G(x,t)=\frac{f(t)}{x}$. If we put this function inside this inequality, we see

Note we have used change-of-variable twice and the inequality once.

## A constructive approach

I have no idea how people came up with this solution. Take $xF(x)=\int_0^x f(t)t^{u}t^{-u}dt$ where $0<u<1-\frac{1}{p}$. Hölder’s inequality gives us

Hence

Note we have used the fact that $\frac{1}{p}+\frac{1}{q}=1 \implies p+q=pq$ and $\frac{p}{q}=p-1$. Fubini’s theorem gives us the final answer:

It remains to find the minimum of $\varphi(u) = \left(\frac{1}{1-uq}\right)^{p-1}\frac{1}{up}$. This is an elementary calculus problem. By taking its derivative, we see when $u=\frac{1}{pq}<1-\frac{1}{p}$ it attains its minimum $\left(\frac{p}{p-1}\right)^p=q^p$. Hence we get

which is exactly what we want. Note the constant $q$ cannot be replaced with a smaller one. We simply proved the case when $f \geq 0$. For the general case, one simply needs to take absolute value.

## Integration by parts

This approach makes use of properties of $L^p$ space. Still we assume that $f \geq 0$ but we also assume $f \in C_c((0,\infty))$, that is, $f$ is continuous and has compact support#Compact_support). Hence $F$ is differentiable in this situation. Integration by parts gives

Note since $f$ has compact support, there are some $[a,b]$ such that $f >0$ only if $0 < a \leq x \leq b < \infty$ and hence $xF(x)^p\vert_0^\infty=0$. Next it is natural to take a look at $F’(x)$. Note we have

hence $xF’(x)=f(x)-F(x)$. A substitution gives us

which is equivalent to say

Hölder’s inequality gives us

Together with the identity above we get

which is exactly what we want since $1-\frac{1}{q}=\frac{1}{p}$ and all we need to do is divide $\left[\int_0^\infty F^pdx\right]^{1/q}$ on both sides. So what’s next? Note $C_c((0,\infty))$ is dense in $L^p((0,\infty))$. For any $f \in L^p((0,\infty))$, we can take a sequence of functions $f_n \in C_c((0,\infty))$ such that $f_n \to f$ with respect to $L^p$-norm. Taking $F=\frac{1}{x}\int_0^x f(t)dt$ and $F_n = \frac{1}{x}\int_0^x f_n(t)dt$, we need to show that $F_n \to F$ pointwise, so that we can use Fatou’s lemma. For $\varepsilon>0$, there exists some $m$ such that $\lrVert[f_n-f]_p < \frac{1}{n}$. Thus

Hence $F_n \to F$ pointwise, which also implies that $|F_n|^p \to |F|^p$ pointwise. For $|F_n|$ we have

note the third inequality follows since we have already proved it for $f \geq 0$. By Fatou’s lemma, we have