Suppose $1 < p < \infty$ and $f \in L^p((0,\infty))$ (with respect to Lebesgue measure of course) is a nonnegative function, take

we have Hardy’s inequality $\def\lrVert[#1]{\lVert #1 \rVert}$

where $\frac{1}{p}+\frac{1}{q}=1$ of course.

There are several ways to prove it. I think there are several good reasons to write them down thoroughly since that may be why you find this page. Maybe you are burnt out since it’s left as exercise. You are assumed to have enough knowledge of Lebesgue measure and integration.

Minkowski’s integral inequality

Let $S_1,S_2 \subset \mathbb{R}$ be two measurable set, suppose $F:S_1 \times S_2 \to \mathbb{R}$ is measurable, then

A proof can be found at here and you need to turn to Example A9. You may need to replace all measures with Lebesgue measure $m$.

Now let’s get into it. For a measurable function in this place we should have $G(x,t)=\frac{f(t)}{x}$. If we put this function inside this inequality, we see

Note we have used change-of-variable twice and the inequality once.

A constructive approach

I have no idea how people came up with this solution. Take $xF(x)=\int_0^x f(t)t^{u}t^{-u}dt$ where $0<u<1-\frac{1}{p}$. Hölder’s inequality gives us

Hence

Note we have used the fact that $\frac{1}{p}+\frac{1}{q}=1 \implies p+q=pq$ and $\frac{p}{q}=p-1$. Fubini’s theorem gives us the final answer:

It remains to find the minimum of $\varphi(u) = \left(\frac{1}{1-uq}\right)^{p-1}\frac{1}{up}$. This is an elementary calculus problem. By taking its derivative, we see when $u=\frac{1}{pq}<1-\frac{1}{p}$ it attains its minimum $\left(\frac{p}{p-1}\right)^p=q^p$. Hence we get

which is exactly what we want. Note the constant $q$ cannot be replaced with a smaller one. We simply proved the case when $f \geq 0$. For the general case, one simply needs to take absolute value.

Integration by parts

This approach makes use of properties of $L^p$ space. Still we assume that $f \geq 0$ but we also assume $f \in C_c((0,\infty))$, that is, $f$ is continuous and has compact support#Compact_support). Hence $F$ is differentiable in this situation. Integration by parts gives

Note since $f$ has compact support, there are some $[a,b]$ such that $f >0$ only if $0 < a \leq x \leq b < \infty$ and hence $xF(x)^p\vert_0^\infty=0$. Next it is natural to take a look at $F’(x)$. Note we have

hence $xF’(x)=f(x)-F(x)$. A substitution gives us

which is equivalent to say

Hölder’s inequality gives us

Together with the identity above we get

which is exactly what we want since $1-\frac{1}{q}=\frac{1}{p}$ and all we need to do is divide $\left[\int_0^\infty F^pdx\right]^{1/q}$ on both sides. So what’s next? Note $C_c((0,\infty))$ is dense in $L^p((0,\infty))$. For any $f \in L^p((0,\infty))$, we can take a sequence of functions $f_n \in C_c((0,\infty))$ such that $f_n \to f$ with respect to $L^p$-norm. Taking $F=\frac{1}{x}\int_0^x f(t)dt$ and $F_n = \frac{1}{x}\int_0^x f_n(t)dt$, we need to show that $F_n \to F$ pointwise, so that we can use Fatou’s lemma. For $\varepsilon>0$, there exists some $m$ such that $\lrVert[f_n-f]_p < \frac{1}{n}$. Thus

Hence $F_n \to F$ pointwise, which also implies that $|F_n|^p \to |F|^p$ pointwise. For $|F_n|$ we have

note the third inequality follows since we have already proved it for $f \geq 0$. By Fatou’s lemma, we have