A Continuous Function Sending L^p Functions to L^1
Throughout, let $(X,\mathfrak{M},\mu)$ be a measure space where $\mu$ is positive.
The question
If $f$ is of $L^p(\mu)$, which means $\lVert f \rVert_p=\left(\int_X |f|^p d\mu\right)^{1/p}<\infty$, or equivalently $\int_X |f|^p d\mu<\infty$, then we may say $|f|^p$ is of $L^1(\mu)$. In other words, we have a function
This function does not have to be one to one due to absolute value. But we hope this function to be fine enough, at the very least, we hope it is continuous.
Here, $f \sim g$ means that $f-g$ equals $0$ almost everywhere with respect to $\mu$. It can be easily verified that this is an equivalence relation.
Continuity
We still use the $\varepsilon-\delta$ argument but it’s in a metric space. Suppose $(X,d_1)$ and $(Y,d_2)$ are two metric spaces and $f:X \to Y$ is a function. We say $f$ is continuous at $x_0 \in X$ if, for any $\varepsilon>0$, there exists some $\delta>0$ such that $d_2(f(x_0),f(x))<\varepsilon$ whenever $d_1(x_0,x)<\delta$. Further, we say $f$ is continuous on $X$ if $f$ is continuous at every point $x \in X$.
Metrics
For $1\leq p<\infty$, we already have a metric by
given that $d(f,g)=0$ if and only if $f \sim g$. This is complete and makes $L^p$ a Banach space. But for $0<p<1$ (yes we are going to cover that), things are much more different, and there is one reason: Minkowski inequality holds reversely! In fact, we have
for $0<p<1$. $L^p$ space has too many weird things when $0<p<1$. Precisely,
For $0<p<1$, $L^p(\mu)$ is locally convex if and only if $\mu$ assumes finitely many values. (Proof.)
On the other hand, for example, $X=[0,1]$ and $\mu=m$ be the Lebesgue measure, then $L^p(\mu)$ has no open convex subset other than $\varnothing$ and $L^p(\mu)$ itself. However,
A topological vector space $X$ is normable if and only if its origin has a convex bounded neighbourhood. (See Kolmogorov’s normability criterion.)
Therefore $L^p(m)$ is not normable, hence not Banach.
We have gone too far. We need a metric that is fine enough.
Metric of $L^p$ when $0<p<1$
Define
for $f \in L^p(\mu)$. We will show that we have a metric by
Fix $y\geq 0$, consider the function
We have $f(0)=y^p$ and
when $x > 0$ and hence $f(x)$ is nonincreasing on $[0,\infty)$, which implies that
Hence for any $f$, $g \in L^p$, we have
This inequality ensures that
is a metric. It’s immediate that $d(f,g)=d(g,f) \geq 0$ for all $f$, $g \in L^p(\mu)$. For the triangle inequality, note that
This is translate-invariant as well since
The completeness can be verified in the same way as the case when $p>1$. In fact, this metric makes $L^p$ a locally bounded F-space.
The continuity of $\lambda$
The metric of $L^1$ is defined by
We need to find a relation between $d_p(f,g)$ and $d_1(\lambda(f),\lambda(g))$, where $d_p$ is the metric of the corresponding $L^p$ space.
$0<p<1$
As we have proved,
Without loss of generality we assume $x \geq y$ and therefore
Hence
By interchanging $x$ and $y$, we get
Replacing $x$ and $y$ with $|f|$ and $|g|$ where $f$, $g \in L^p$, we get
But
and we therefore have
Hence $\lambda$ is continuous (and in fact, Lipschitz continuous and uniformly continuous) when $0<p<1$.
$1 \leq p < \infty$
It’s natural to think about Minkowski’s inequality and Hölder’s inequality in this case since they are critical inequality enablers. You need to think about some examples of how to create the condition to use them and get a fine result. In this section we need to prove that
This inequality is surprisingly easy to prove however. We will use nothing but the mean value theorem. Without loss of generality we assume that $x > y \geq 0$ and define $f(t)=t^p$. Then
where $y < \zeta < x$. But since $p-1 \geq 0$, we see $\zeta^{p-1} < x^{p-1} <x^{p-1}+y^{p-1}$. Therefore
For $x=y$ the equality holds.
Therefore
By Hölder’s inequality, we have
By Minkowski’s inequality, we have
Now things are clear. Since $1/p+1/q=1$, or equivalently $1/q=(p-1)/p$, suppose $\lVert f \rVert_p$, $\lVert g \rVert_p \leq R$, then $(p-1)q=p$ and therefore
Summing the inequalities above, we get
hence $\lambda$ is continuous.
Conclusion and further
We have proved that $\lambda$ is continuous, and when $0<p<1$, we have seen that $\lambda$ is Lipschitz continuous. It’s natural to think about its differentiability afterwards, but the absolute value function is not even differentiable so we may have no chance. But this is still a fine enough result. For example we have no restriction to $(X,\mathfrak{M},\mu)$ other than the positivity of $\mu$. Therefore we may take $\mathbb{R}^n$ as the Lebesgue measure space here, or we can take something else.
It’s also interesting how we use elementary Calculus to solve some much more abstract problems.
A Continuous Function Sending L^p Functions to L^1
https://desvl.xyz/2020/11/28/A-continuous-function-sending-Lp-functions-to-L1/