Topological properties of the zeros of a holomorphic function

What’s going on

If for every $z_0 \in \Omega$ where $\Omega$ is a plane open set, the limit

exists, we say that $f$ is holomorphic (a.k.a. analytic) in $\Omega$. If $f$ is holomorphic in the whole plane, it’s called entire. The class of all holomorphic functions (denoted by $H(\Omega)$) has many interesting properties. For example it does form a ring.

But what happens if we talk about the points where $f$ is equal to $0$? Is it possible to find an entire function $g$ such that $g(z)=0$ if and only if $z$ is on the unit circle? The topological property we will discuss in this post answers this question negatively.

Zeros

Suppose $\Omega$ is a region, the set

is a at most countable set without limit point, as long as $f$ is not identically equal to $0$ on $\Omega$.

Trivially, if $f(\Omega)=\{0\}$, we have $Z(f)=\Omega$. The set of unit circle is not at most countable and every point is a limit point. Hence if an entire function is equal to $0$ on the unit circle, then the function equals to $0$ on the whole plane.

Note: the connectivity of $\Omega$ is important. For example, for two disjoint open sets $\Omega_0$ and $\Omega_1$, define $f(z)=0$ on $\Omega_0$ and $f(z)=1$ on $\Omega_1$, then everything fails.

A simple application (Feat. Baire Category Theorem)

Before establishing the proof, let’s see what we can do using this result.

Suppose that $f$ is an entire function, and that in every power series

has at leat one coefficient is $0$, then $f$ is a polynomial.

Clearly we have $n!c_n=f^{(n)}(a)$, thus for every $a \in \mathbb{C}$, we can find a postivie integer $n_0$ such that $f^{(n_0)}(a)=0$. Thus we establish the identity:

Notice the fact that $f^{(n)}$ is entire. So $Z(f^{n})$ is either an at most countable set without limit point, or simply equal to $\mathbb{C}$. If there exists a number $N$ such that $Z(f^{N})=\mathbb{C}$, then naturally $Z(f^{n})=\mathbb{C}$ holds for all $n \geq N$. Whilst we see that $f$’s power series has finitely many nonzero coefficients, thus polynomial.

So the question is, is this $N$ always exist? Being an at most countable set without limit points , $Z(f^{(n)})$ has empty interior (nowhere dense). But according to Baire Category Theorem, $\mathbb{C}$ could not be a countable union of nowhere dense sets (of the first category if you say so). This forces the existence of $N$.

Proof

The proof will be finished using some basic topology techniques.

Let $A$ be the set of all limit points of $Z(f)$ in $\Omega$. The continuity of $f$ shows that $A \subset Z(f)$. We’ll show that if $A \neq \varnothing$, then $Z(f)=\Omega$.

First we claim that if $a \in A$, then $a \in \bigcap_{n \geq 0}Z(f^{(n)})$. That is, $f^{(k)}(a) = 0$ for all $k \geq 0$. Suppose this fails, then there is a smallest positive integer $m$ such that $c_m \neq 0$ for the power series on the disc $D(a;r)$:

Define

It’s clear that $g \in H(D(a;r))$ since we have

But the continuity shows that $g(a)=0$ while $c_m \neq 0$. A contradiction.

Next fix a point $b \in \Omega$. Choose a curve (continuous mapping) defined $\gamma$ on $[0,1]$ such that $\gamma(0)=a$ and $\gamma(1)=b$. Let

By hypothesis, $0 \in \Gamma$. We shall prove that $1 \in \Gamma$. Let

There exists a sequence $\{t_n\}\subset\Gamma$ such that $t_n \to s$. The continuity of $f^{(k)}$ and $\gamma$ shows that

Hence $s \in \Gamma$. Choose a disc $D(\gamma(s);\delta)\subset\Omega$. On this disc, $f$ is represented by its power series but all coefficients are $0$. It follows that $f(z)=0$ for all $z \in D(\gamma(s);\delta)$. Further, $f^{(k)}(z)=0$ for all $z \subset D(\gamma(s);\delta)$ for all $k \geq 0$. Therefore by the continuity of $\gamma$, there exists $\varepsilon>0$ such that $\gamma(s-\varepsilon,s+\varepsilon)\subset D(\gamma(s);\delta)$, which implies that $(s-\varepsilon, s+\varepsilon)\cap[0,1]\subset\Gamma$. Since $s=\sup\Gamma$, we have $s=1$, therefore $1 \in \Gamma$.

So far we showed that $\Omega = \bigcap_{n \geq 0}Z(f^{(n)})$, which forces $Z(f)=\Omega$. This happens when $Z(f)$ contains limit points, which is equivalent to what we shall prove.

When $Z(f)$ contains no limit point, all points of $Z(f)$ are isolated points; hence in each compact subset of $\Omega$, there are at most finitely many points in $Z(f)$. Since $\Omega$ is $\sigma$-compact, $Z(f)$ is at most countable. $Z(f)$ is also called a discrete set in this situation.

洛必达法则的几种不同的证明

前言

洛必达法则相比甚至不少高中生甚至初中生都听说过,知道怎么进行简单的应用。简单点说,处理$\frac{0}{0}$的函数时,对上下进行求导,可能会很大程度上简化计算。但是洛必达法则为什么能奏效? 能不能用严格的数理语言进行论证? 这是这篇文章需要解决的。

本博文于2022年10月4日对利用中值定理的证明进行了重新编排。编排的过程中发现最后两步在之前其实是没解释清楚的,甚至存在错误。

洛必达法则的完整论述

设$f$和$g$为$(a,b)$上的实可微函数,且在$(a,b)$区间上总有$g’(x) \ne 0$. 设

或仅有

其中$x \to a$自然也可以换成$x \to b$. 这里把发散到无穷也看作是极限,也就是说$-\infty \le A \le \infty$且$-\infty \le a < b \le +\infty$.

证明1:线性近似

波努利最开始的”证明”

洛必达法则首次出现于1696年洛必达的 Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes 一书中。这本书当然以”洛必达法则”闻名于世。证明是这样完成的:

这个证明很好理解,线性近似展开,再考虑到$f(a)=g(a)=0$就得到结果。但是这个做法肯定是不合适的,$dx$在这里非常模糊,也不方便表达$x\to\infty$的情况。关于历史内容可以参见 The Historical Development of the Calculus 一书。

线性近似的严格证明

首先,这里只讨论$h\to0$的情况。实际上,对于其他情况,可以作换元。例如$h\to\infty$时,可以利用$u=\frac{1}{h}$,那么又转换成了$u\to0$的情况。另外我们只讨论函数趋近于$0$的情况。因为趋近于无穷时函数的线性近似可能无法处理。例如$y=\frac{1}{x}$在$x=0$附近是没有近似的。

对函数导数有

我们可以写成

其中$\lim\limits_{h\to0}r(h)=0$,且$r(h)$为连续函数。进行代数变形(这里$r(h)$的正负进行了调整),我们的得到线性近似

同样可以写出$g(x)$的线性近似

那么就能得到

而$h\to0$时,$r(h)\to0$,$s(h)\to0$,故得到了结论。

证明2:中值定理

这个证明中,我们会利用柯西中值定理(GMVT)对所有的情况进行完整的证明,这期间涉及到一些不等式运算技巧。证明来自W. Rudin的 Principles Of Mathematical Analysis,我会在其中加上一些额外的解释。关于$g(x) \to \pm\infty$的情况,我们在此只讨论$+\infty$.

情况1: $-\infty\leq{A}<+\infty$

选取实数$q>A$,再选取$\varepsilon>0$使得$A+\varepsilon<q$. 因为$\frac{f’(x)}{g’(x)}\to{A}$,根据极限的定义,必定有实数$\delta\in(0,b-a)$,使得对于所有$a<x<a+\delta$,始终有$-\varepsilon<\frac{f’(x)}{g’(x)}-A<\varepsilon$. 特别地,

对任意$a<x<y<a+\delta$,由GMVT可知,存在$t\in(x,y)$使得:

最后一个不等式成立是因为$t\in(x,y)\subset(a,a+\delta)$,而在$(a,a+\delta)$中这个不等式成立。接下来,我们根据$g(x)$在$x \to a$时的取值,分别讨论,会发现结果其实类似.

情况1.1: $g(x)\to 0$且$f(x) \to 0$

在不等式$\eqref{(A)}$中,令$x \to a$,会发现有:

更正式地说,对任意的$q>A$和$0< \varepsilon< q-A$,都存在$\delta > 0$,使得对任意的$a<y<a+\delta$,均满足不等式

(注意:我们这里并没有证明收敛,而只证明了收敛的一半,接下来的情况1.2也是类似的。在接下来我们不刻意地写$\delta$,而是写成指定存在的实数,这样的写法是等价的,虽然初学微积分时可能会感觉比较陌生。)

情况1.2: $g(x)\to+\infty$

固定不等式(A)中的$ y $. 因为$ g(x) \to +\infty $,在$ (a,y) $一定存在$ c_1 $使得对于任意$ a< x < c_1 $,总是有$ g(x) > g(y) $和$ g(x) > 0 $同时成立。将不等式(A)两边同时乘以$ [g(x)-g(y)]/g(x) $,我们得到

此即

根据$g(x) \to +\infty$的定义,存在$c_2 \in (a,c_1)$使得:

情况1.1和1.2的整合

不等式$\eqref{(B)}$和$\eqref{(D)}$都只说明,存在$c\in(a,b)$使得对于所有$x\in(a,c)$,满足$\frac{f(x)}{g(x)}<q$.但是$\frac{f(x)}{g(x)}$与$A$的关系我们并不知道。但是,如果$A=-\infty$,那么我们已经证明了$\frac{f(x)}{g(x)} \to -\infty$的成立。

情况2: $-\infty<{A}\leq+\infty$

这个情况是和情况1完全类似的。同理可证,对任意$p$,当且仅当$p<A$时,总有$c’\in(a,b)$,使得对于所有$x\in(a,c’)$,满足$p<\frac{f(x)}{g(x)}$. 如果$A=+\infty$,那么我们已经证明了$\frac{f(x)}{g(x)} \to +\infty$的情况。

除去$A=\pm\infty$,综合情况1和2,我们发现,对任意的$p,q$满足$p<A<q$,若取$c_0=\min\{c,c’\}$,则对于任意$x \in (a,c_0)$,一定有

这其实就等价于$\lim_{x \to a}\frac{f(x)}{g(x)}=A$. $\square$

证明中几个小问题

不等式$\eqref{(A)}$第一项的分母为什么一定有意义?

假设它无意义. 如果有$g(x)=g(y)$,那么有$a<{x}<t<y<b$使得$g’(t)=0$, 而这与原假设矛盾.

不等式$\eqref{(B)}$中为什么变成小于等于?

每次改变$x$,$t$也发生改变,记为$t(x)$,此时可能有$\lim\limits_{x\to{a}}\frac{f’(t(x))}{g’(t(x))}=r$.