In this episode we focus on the rational field. What can we know about the Galois group of an irreducible polynomial with prime degree? There is a method by counting the number of nonreal roots. From this, we obtain an algorithm to compute the Galois group.

Read moreWe study the Galois group of a cubic polynomial over a field with characteristic not equal to 2 and 3.

Read moreWe try to prove the fundamental theorem of algebra, that the complex field is algebraically closed, using as little analysis as possible. In other words, the following proof will be *almost* algebraic.

Read moreLet $A$ be an abelian group. Let $(e_i)_{i \in I}$ be a family of elements of $A$. We say that this family is a **basis** for $A$ if the family is not empty, and if every element of $A$ has a unique expression as a **linear expression**

where $x_i \in \mathbb{Z}$ and almost all $x_i$ are equal to $0$. This means that the sum is actually finite. An abelian group is said to be **free** if it has a basis. Alternatively, we may write $A$ as a direct sum by

Let $S$ be a set. Say we want to get a group out of this for some reason, so how? It is not a good idea to endow $S$ with a binary operation beforehead since overall $S$ is merely a set. We shall **generate** a group out of $S$ in the most **freely** way.

Let $\mathbb{Z}\langle S \rangle$ be the set of all **maps** $\varphi:S \to \mathbb{Z}$ such that, for only a **finite** number of $x \in S$, we have $\varphi(x) \neq 0$. For simplicity, we denote $k \cdot x$ to be some $\varphi_0 \in \mathbb{Z}\langle S \rangle$ such that $\varphi_0(x)=k$ but $\varphi_0(y) = 0$ if $y \neq x$. For any $\varphi$, we claim that $\varphi$ has a unique expression

One can consider these integers $k_i$ as the order of $x_i$, or simply the time that $x_i$ appears (may be negative). For $\varphi\in\mathbb{Z}\langle S \rangle$, let $I=\{x_1,x_2,\cdots,x_n\}$ be the set of elements of $S$ such that $\varphi(x_i) \neq 0$. If we denote $k_i=\varphi(x_i)$, we can show that $\psi=k_1 \cdot x_1 + k_2 \cdot x_2 + \cdots + k_n \cdot x_n$ is equal to $\varphi$. For $x \in I$, we have $\psi(x)=k$ for some $k=k_i\neq 0$ by definition of the ‘$\cdot$’; if $y \notin I$ however, we then have $\psi(y)=0$. This coincides with $\varphi$. $\blacksquare$

By definition the zero map $\mathcal{O}=0 \cdot x \in \mathbb{Z}\langle S \rangle$ and therefore we may write any $\varphi$ by

where $k_x \in \mathbb{Z}$ and can be zero. Suppose now we have two expressions, for example

Then

Suppose $k_y - k_y’ \neq 0$ for some $y \in S$, then

which is a contradiction. Therefore the expression is unique. $\blacksquare$

This $\mathbb{Z}\langle S \rangle$ is what we are looking for. It is an additive group (which can be proved immediately) and, what is more important, every element can be expressed as a ‘sum’ associated with finite number of elements of $S$. We shall write $F_{ab}(S)=\mathbb{Z}\langle S \rangle$, and call it the **free abelian group generated by $S$**. For elements in $S$, we say they are **free generators** of $F_{ab}(S)$. If $S$ is a finite set, we say $F_{ab}(S)$ is **finitely generated**.

An abelian group is

freeif and only if it is isomorphic to a free abelian group $F_{ab}(S)$ for some set $S$.

**Proof.** First we shall show that $F_{ab}(S)$ is free. For $x \in M$, we denote $\varphi = 1 \cdot x$ by $[x]$. Then for any $k \in \mathbb{Z}$, we have $k[x]=k \cdot x$ and $k[x]+k’[y] = k\cdot x + k’ \cdot y$. By definition of $F_{ab}(S)$, any element $\varphi \in F_{ab}(S)$ has a unique expression

Therefore $F_{ab}(S)$ is free since we have found the basis $([x])_{x \in S}$.

Conversely, if $A$ is free, then it is immediate that its basis $(e_i)_{i \in I}$ generates $A$. Our statement is therefore proved. $\blacksquare$

(Proposition 1)If $A$ is an abelian group, then there is a free group $F$ which has a subgroup $H$ such that $A \cong F/H$.

**Proof.** Let $S$ be any set containing $A$. Then we get a surjective map $\gamma: S \to A$ and a free group $F_{ab}(S)$. We also get a unique homomorphism $\gamma_\ast:F_{ab}(S) \to A$ by

which is also surjective. By the first isomorphism theorem, if we set $H=\ker(\gamma_\ast)$ and $F_{ab}(S)=F$, then

$\blacksquare$

(Proposition 2)If $A$ is finitely generated, then $F$ can also be chosen to be finitely generated.

**Proof.** Let $S$ be the generator of $A$, and $S’$ is a set containing $S$. Note if $S$ is finite, which means $A$ is finitely generated, then $S’$ can also be finite by inserting one or any finite number more of elements. We have a map from $S$ and $S’$ into $F_{ab}(S)$ and $F_{ab}(S’)$ respectively by $f_S(x)=1 \cdot x$ and $f_{S’}(x’)=1 \cdot x’$. Define $g=f_{S’} \circ \lambda:S’ \to F_{ab}(S)$ we get another homomorphism by

This defines a unique homomorphism such that $g_\ast \circ f_{S’} = g$. As one can also verify, this map is also surjective. Therefore by the first isomorphism theorem we have

$\blacksquare$

It’s worth mentioning separately that we have implicitly proved two statements with commutative diagrams:

(Proposition 3 | Universal property)If $g:S \to B$ is a mapping of $S$ into some abelian group $B$, then we can define a unique group-homomorphism making the following diagram commutative:

(Proposition 4)If $\lambda:S \to S$ is a mapping of sets, there is a unique homomorphism $\overline{\lambda}$ making the following diagram commutative:

(In the proof of Proposition 2 we exchanged $S$ an $S’$.)

(The Grothendieck group)Let $M$ be a commutative monoid written additively. We shall prove that there exists a commutative group $K(M)$ with a monoid homomorphismsatisfying the following universal property: If $f:M \to A$ is a homomorphism from $M$ into a abelian group $A$, then there exists a unique homomorphism $f_\gamma:K(M) \to A$ such that $f=f_\gamma\circ\gamma$. This can be represented by a commutative diagram:

**Proof.** There is a commutative diagram describes what we are doing.

Let $F_{ab}(M)$ be the free abelian group generated by $M$. For $x \in M$, we denote $1 \cdot x \in F_{ab}(M)$ by $[x]$. Let $B$ be the group generated by all elements of the type

where $x,y \in M$. This can be considered as a subgroup of $F_{ab}(M)$. We let $K(M)=F_{ab}(M)/B$. Let $i=x \to [x]$ and $\pi$ be the canonical map

We are done by defining $\gamma: \pi \circ i$. Then we shall verify that $\gamma$ is our desired homomorphism satisfying the universal property. For $x,y \in M$, we have $\gamma(x+y)=\pi([x+y])$ and $\gamma(x)+\gamma(y) = \pi([x])+\pi([y])=\pi([x]+[y])$. However we have

which implies that

Hence $\gamma$ is a monoid-homomorphism. Finally the universal property. By proposition 3, we have a unique homomorphism $f_\ast$ such that $f_\ast \circ i = f$. Note if $y \in B$, then $f_\ast(y) =0$. Therefore $B \subset \ker{f_\ast}$ Therefore we are done if we define $f_\gamma(x+B)=f_\ast (x)$. $\blacksquare$

Why such a $B$? Note in general $[x+y]$ is not necessarily equal to $[x]+[y]$ in $F_{ab}(M)$, but we don’t want it to be so. So instead we create a new **equivalence relation**, by factoring a subgroup generated by $[x+y]-[x]-[y]$. Therefore in $K(M)$ we see $[x+y]+B = [x]+[y]+B$, which finally makes $\gamma$ a homomorphism. We use the same strategy to generate the **tensor product** of two modules later. But at that time we have more than one relation to take care of.

If for all $x,y,z \in M$, $x+y=x+z$ implies $y=z$, then we say $M$ is a cancellative monoid, or the cancellation law holds in $M$. Note for the proof above we didn’t use any property of cancellation. However we still have an interesting property for cancellation law.

(Theorem)The cancellation law holds in $M$ if and only if $\gamma$ is injective.

**Proof.** This proof involves another approach to the Grothendieck group. We consider pairs $(x,y) \in M \times M$ with $x,y \in M$. Define

Then we get a equivalence relation (try to prove it yourself!). We define the addition component-wise, that is, $(x,y)+(x’,y’)=(x+x’,y+y’)$, then the equivalence classes of pairs form a group $A$, where the zero element is $[(0,0)]$. We have a monoid-homomorphism

If cancellation law holds in $M$, then

Hence $f$ is injective. By the universal property of the Grothendieck group, we get a unique homomorphism $f_\gamma$ such that $f_\gamma \circ \gamma = f$. If $x \neq 0$ in $M$, then $f_\gamma \circ \gamma(x) \neq 0$ since $f$ is injective. This implies $\gamma(x) \neq 0$. Hence $\gamma$ is injective.

Conversely, if $\gamma$ is injective, then $i$ is injective (this can be verified by contradiction). Then we see $f=f_\ast \circ i$ is injective. But $f(x)=f(y)$ if and only if $x+\ell = y+\ell$, hence $x+ \ell = y+ \ell$ implies $x=y$, the cancellation law holds on $M$.

Our first example is $\mathbb{N}$. Elements of $F_{ab}(\mathbb{N})$ are of the form

For elements in $B$ they are generated by

which we wish to represent $0$. Indeed, $K(\mathbb{N}) \simeq \mathbb{Z}$ since if we have a homomorphism

For $r \in \mathbb{Z}$, we see $f(1 \cdot r+B)=r$. On the other hand, if $\sum_{j=1}^{m}k_j \cdot n_j \not\in B$, then its image under $f$ is not $0$.

In the first example we ‘granted’ the natural numbers ‘subtraction’. Next we grant the division on multiplicative monoid.

Consider $M=\mathbb{Z} \setminus 0$. Now for $F_{ab}(M)$ we write elements in the form

which denotes that $\varphi(n_j)=k_j$ and has no other differences. Then for elements in $B$ they are generated by

which we wish to represent $1$. Then we see $K(M) \simeq \mathbb{Q} \setminus 0$ if we take the isomorphism

Of course this is not the end of the Grothendieck group. But for further example we may need a lot of topology background. For example, we have the topological $K$-theory group of a topological space to be the Grothendieck group of isomorphism classes of topological vector bundles. But I think it is not a good idea to post these examples at this timing.

Before we go into group theory, let’s recall how Cauchy sequence is defined in analysis.

A sequence $(x_n)_{n=1}^{\infty}$ of real/complex numbers is called a Cauchy sequence if, for every $\varepsilon>0$, there is a positive integer $N$ such that for all $m,n>N$, we have

That said, the **distance** between two numbers is always ‘too close’. Notice that only distance is involved, the definition of Cauchy sequence in metric space comes up in the natural of things.

Given a metric space $(X,d)$, a sequence $(x_n)_{n=1}^{\infty}$ is Cauchy if for every real number $\varepsilon>0$, there is a positive integer $N$ such that, for all $m,n>N$, the distance by

By considering the topology induced by metric, we see that $x_n$ lies in a neighborhood of $x_m$ with radius $\varepsilon$. But a topology can be constructed by neighborhood, hence the Cauchy sequence for topological vector space follows.

For a topological vector space $X$, pick a local base $\mathcal{B}$, then $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence if for each member $U \in \mathcal{B}$, there exists some number $N$ such that for $m,n>N$, we have

But in a topological space, it’s not working. Consider two topological space by

with usual topology. We have $X \simeq Y$ since we have the map by

as a homeomorphism. Consider the Cauchy sequence $(\frac{1}{n+1})_{n=1}^{\infty}$, we see $(h(\frac{1}{n+1}))_{n=1}^{\infty}=(n+1)_{n=1}^{\infty}$ which is not Cauchy. This counterexample shows that being a Cauchy sequence is not preserved by homeomorphism.

Similarly, one can have a Cauchy sequence in a topological group (bu considering subtraction as inverse).

A sequence $(x_n)_{n=1}^{\infty}$ in a topological group $G$ is a Cauchy sequence if for every open neighborhood $U$ of the identity $G$, there exists some number $N$ such that whenever $m,n>N$, we have

A metric space $(X,d)$ where every Cauchy sequence converges is complete.

Spaces like $\mathbb{R}$, $\mathbb{C}$ are complete with Euclid metric. But consider the sequence in $\mathbb{Q}$ by

we have $a_n\in\mathbb{Q}$ for all $n$ but the sequence does not converge in $\mathbb{Q}$. Indeed in $\mathbb{R}$ we can naturally write $a_n \to e$ but $e \notin \mathbb{Q}$ as we all know.

There are several ways to construct $\mathbb{R}$ from $\mathbb{Q}$. One of the most famous methods is Dedekind’s cut. However you can find no explicit usage of Cauchy sequence. There is another method by using Cauchy sequence explicitly. We are following that way algebraically.

Suppose we are given a group $G$ with a sequence of normal subgroups $(H_n)_{n=1}^{\infty}$ with $H_n \supset H_{n+1}$ for all $n$, all of which has finite index. We are going to complete this group.

A sequence $(x_n)_{n=1}^{\infty}$ in $G$ will be called **Cauchy sequence** if given $H_k$, there exists some $N>0$ such that for $m,n>N$, we have

Indeed, this looks very similar to what we see in topological group, but we don’t want to grant a topology to the group anyway. This definition does not go to far from the original definition of Cauchy sequence in $\mathbb{R}$ as well. If you treat $H_k$ as some ‘small’ thing, it shows that $x_m$ and $x_n$ are close enough (by considering $x_nx_m^{-1}$ as their difference).

A sequence $(x_n)_{n=1}^{\infty}$ in $G$ will be called **null sequence** if given $k$, there exists some $N>0$ such that for all $n>N$, we have

or you may write $x_ne^{-1} \in H_k$. It can be considered as being *arbitrarily close to the identity $e$*.

The Cauchy sequences (of $G$) form a group under termwise product

*Proof.* Let $C$ be the set of Cauchy sequences, we shall show that $C$ forms a group. For $(x_1,x_2,\cdots),(y_1,y_2,\cdots)\in C$, the product is defined by

The associativity follows naturally from the associativity of $G$. To show that $(x_1y_1,x_2y_2,\cdots)$ is still a Cauchy sequence, notice that for big enough $m$, $n$ and some $k$, we have

But $(x_ny_n)(x_my_m)^{-1}=x_ny_ny_m^{-1}x_m^{-1}$. To show that this is an element of $H_k$, notice that

Since $y_ny_m^{-1}\in H_k$, $H_k$ is normal, we have $x_ny_ny_mx_n^{-1} \in H_k$. Since $x_nx_m^{-1} \in H_k$, $(x_ny_n)(x_my_m)^{-1}$ can be viewed as a product of two elements of $H_k$, therefore is an element of $H_k$.

Obviously, if we define $e_C=(e_G,e_G,\cdots)$, where $e_G$ is the identity of $G$, $e_C$ becomes the identity of $C$, since

Finally the inverse. We need to show that

is still an element of $C$. This is trivial since if we have

then

as $H_k$ is a group.

The null sequences (of $G$) form a group, further, it’s a normal subgroup of $C$, that is, the group of Cauchy sequences.

Let $N$ be the set of null sequences of $G$. Still, the identity is defined by $(e_G,e_G,\cdots)$, and there is no need to duplicate the validation. And the associativity still follows from $G$. To show that $N$ is closed under termwise product, namely if $(x_n),(y_n) \in N$, then $(x_ny_n)\in N$, one only need to notice that, for big $n$, we already have

Therefore $x_ny_n \in H_k$ since $x_n$ and $y_n$ are two elements of $H_k$.

To show that $(x_n^{-1})$, which should be treated as the inverse of $(x_n)$, is still in $N$, notice that if $x_n \in H_k$, then $x_n^{-1} \in H_k$.

Next, we shall show that $N$ is a subgroup of $C$, which is equivalent to show that every null sequence is Cauchy. Given $H_p \supset H_q$, for $(x_n)\in{N}$, there are some big enough $m$ and $n$ such that

therefore

as desired. Finally, pick $(p_n) \in N$ and $(q_n) \in C$, we shall show that $(q_n)(p_n)(q_n)^{-1} \in N$. That is, the sequence $(q_np_nq_n^{-1})$ is a null sequence. Given $H_k$, we have some big $n$ such that

therefore

since $H_k$ is normal. Our statement is proved.

The factor group $C/N$ is called the

completionof $G$ (with respect to $(H_n)$).

As we know, the elements of $C/N$ are cosets. A coset can be considered as an element of $G$’s completion. Let’s head back to some properties of factor group. Pick $x,y \in C$, then $xN=yN$ if and only if $x^{-1}y \in N$. With that being said, two Cauchy sequences are equivalent if their ‘difference’ is a null sequence.

Informally, consider the addictive group $\mathbb{Q}$. There are two Cauchy sequence by

They are equivalent since

is a null sequence. That’s why people say $0.99999… = 1$ (in analysis, the difference is convergent to $0$; but in algebra, we say the two sequences are equivalent). Another example, $\ln{2}$ can be represented by the equivalent class of

We made our completion using Cauchy sequences. The completion is filled with some Cauchy sequence and some additions of ‘nothing’, whence the gap disappears.

Again, the sequence of normal subgroups does not have to be indexed by $\mathbb{N}$. It can be indexed by any directed partially ordered set, or simply partially ordered set. Removing the restriction of index set gives us a great variety of implementation.

However, can we finished everything about completing $\mathbb{Q}$ using this? The answer is, no - the multiplication is not verified! To finish this, field theory have to be taken into consideration.